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SIM Flight Concept

Three collinear interferometers mounted on a 10 meter long structure
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Mission Overview
• Precisely measure angles

between stellar objects

• 10 meter rigid baseline
interferometer

– Single instrument Flight
System

• Flight Environment
– Atlas V 421 Launch Vehicle

=>  5307 kg launch capability

– Earth-trailing orbit - 1 AU

• Like SIRTF

– 5 year lifetime

Earth-Trailing Solar Orbit

CHARACTERISTICS

C3 0.4 km
2
 /Sec

2

Occultations None
5.5-yr Radiation Dose 20 Krads
Launch Vehicle Atlas V 421
RCS System Mono-Prop
Delta-V Req’d? No
Orbit Determination Range/Doppler
Earth-S/C Range Up to 100 Million Km
Launch Period June, 2006
Mission Duration 5.5 Years

Earth

L+1 yr

L+2 yrs

L+3 yrs

L+4 yrs
L+5 yrs

Sun
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SIM Configuration

Siderostat  Bays (7)

Metrology
Kite Vertices (4)

Solar Array Precision Support Structure (PSS)

Spacecraft
Backpack

Instrument Backpack

External Metrology Boom
(9.0 Meter)

2

3

4

1

Metrology Kite

1 2
3

XY

Z

10.0 Meter
Baseline

4

5

6
7

MET Beams shown
for one Sid Bay only

+Y

+Z

+X
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Key Flight System Requirements

• Science Objectives
– Astrometry

• 4 uas wide angle (15 degrees) mission accuracy =>  10.5 uas
single measurement accuracy

• narrow angle (1 degree) mission accuracy =>  1 uas
measurement accuracy per hour

– wavelength - 0.4 - 0.9 um

– minimum brightness - 20th mag

– sensitivity => 4 uas for 16th mag in 13.3 hours

• Technology Objectives

– Imaging => ~0.5 meter to ~10 meter baselines with “uniform” u-v
coverage

– Nulling Technology Demonstration => 10-4 null over 5 minutes
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SIM Astrometric Measurement

 external delay
- internal delay0

detected
intensity

The peak of the interference pattern occurs when
the internal path delay equals the external path
delay

detector

delay line

beam combiner

telescope 1 telescope 2

External path delay
x = B sin(θθθθ)

Internal path delay

Baseline
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Internal Metrology

Laser gauge measures internal delay

(adjusted by delay line, sensed by fringe detector)

laser
detector

delay line

beam combiner

telescope 1 telescope 2

Internal path delay added 

optical fiducial optical fiducial

Laser path retraces starlight path from combiner to telescopes
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Relationship Between Baselines

telescope 2
Science baseline

telescope 4telescope 3

telescope 1

Guide baseline (1 of 2)

The Guide baseline attitude information is used to stabilize the
science interferometer

Metrology reference
structure & optical

fiducials

Measure baseline B using laser triangulation
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External Metrology Implementation

• Measures relative
orientation of science
and guide baselines

• Allows accurate transfer
of attitude information
from guides to science
interferometer

– Science
interferometer
stabilized by
commanding its delay
line

– Provides long
integration time for
faint stars

External
Metrology Beams
(8 of 32 shown)

Intra-vertex metrology 
(6 beams)
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Imaging with an Interferometer

   

u

v

u

v

u

v

x

y

object u-v (Fourier plane)

x

y

baseline 
orientations:

FT
+

"FT  "
-1

reconstructed 
image

...  

• The interferometer measures the Fourier transform of the
object

• Each baseline orientation selects one point in the (u,v)
plane

– The data for this point is the fringe visibility and phase

• With many baseline orientations, you fill in the (u,v) plane

• The image is reconstructed from these Fourier-domain
measurements
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HST image of Beta Pictoris with central
region blocked (about 16 AU)

SIM will only null out the
starlight in the central 1

AU region

How SIM Performs Nulling

Beam
Splitter

Flat

Dihedral 1

Dihedral 2

Flat

Beam

• In the nulling beam combiner, flip the phase of one arm of the
interferometer before combining the beams

• Stabilize the null to about 1 nm (pathlength)

• Measure the starlight extinction at the center of the null

• Verify requirements have been met
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Pre-Phase A

FY’96 FY’97 FY’98 FY’99 FY’00 FY’01 FY’02 FY’03 FY’04

Phase A

Phase B

5-year Phase E
starts in 6/06)

Industrial Studies

Architecture Selection

Tech. Dev.

Select Ind. 
Partners

FY’05

Design 
Selection SRR

IA PDR/NAR

6/06
LaunchCDR

Science Team

AO Team
Selection

FY’06

Phase C/D
STB-3
MAM-1 MAM-3

SIM Project Schedule
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Programmatic Overview

• Integrated Jet Propulsion Laboratory (JPL) / Industry team

– Assembled to formulate a reference design

• JPL

– Leads the overall system development and Real-time
Control Subsystem

• Lockheed Martin

– Responsible for development of the instrument
Starlight and Metrology Subsystem and the
Interferometer Integration & Test

• TRW

– Responsible for the Precision Structure, Spacecraft and
ATLO (Assembly, Test and Launch Operations)
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Flight System Organization for Formulation Phase
Flight System

Staff
Flight System Engineering

Integrated Modeling

Mission Assurance

Interferometer Architect

Starlight Metrology Real Time Control Avionics Structures & Mechanisms Integration & Test

Optics

Cameras

Laser Source

Beam Launchers

Fiducials

Fiber Distribution

Int’r Electronics

Int’r Control Alg’s

Int’r S/W

Telecom

ACS

CDS

Power/ Pyro

Propulsion

S/C & Instrument 
Backpacks

PSS Structure

Mechanisms

Thermal Control 

Int’r I&T

S/C I&T

ATLO

Instrument (JPL + LM) PSS & S/C (TRW)

Instrument + PSS = Interferometer

Led by JPL
Led by LM
Led by TRW

Mission System

Delay Lines

Beam Combiners
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Flight System Engineering (JPL)

• Leads the development and verification of the system and
subsystem-level requirements and design

Integrated Modeling (JPL)

• Develops nanometer and picometer level models of the flight
interferometer design to predict on-orbit performance

Starlight Subsystem (LM)

• Develops the optics, delay lines, cameras and beam combiners to
gather the starlight and interfere the signals from each arm to
produce a fringe

Metrology Subsystem (LM)

• Develops the laser source, fiber distribution system, beam launchers
and corner cubes to achieve picometer level sensing of the
interferometer baseline lengths and starlight pathlength differences

Flight System Responsibilities
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Real Time Control Subsystem (JPL)

• Develops the electronics and software to control the interferometer
actuators and sensors

Spacecraft (TRW)

• Develops the spacecraft subsystems (telecom, CDS, ACS,
power/pyro, propulsion)

Precision Structure (TRW)

• Develops the precision structure wing and metrology boom,
spacecraft and instrument backpacks and deployment mechanisms

Integration and Test (LM/TR�W)

• Integrates and tests the interferometer, spacecraft and flight system.
Performs functional, environmental, dynamics & control and
astrometric performance tests.

Flight System Responsibilities (Cont’d)
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SIM Design Summary
• Three simultaneously operated Michelson interferometers

– 2 “guide” interferometers used as high precision star
trackers

– 1 Science interferometer
• 10-meter maximum science baseline

• Switchyard interferes any combination of collectors

– allows measurements at different baseline lengths

• External Metrology Truss

– Monitors relative orientation of the three baselines

– Determines absolute distances between reference
fiducials

• Internal Metrology gauging system

– Measures optical path differences between arms

– subaperture metrology scheme - metrology only
measures central portion of starlight beam

• External and internal metrology share common fiducial
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SIM Technology Program - Testbeds
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SIM System Ground Testbeds:  PTI

Palomar Testbed 
Interferometer 

• Fully functioning 110 m
  baseline interferometer
• Science data processing

PTI
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SIM System Ground Testbeds:  STB-1

 Nanometer 
stability on a
flexible structure
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NanometerTestbed Closed Loop Results

• Proven positional stability of less than 10 nm in ambient air

– Use to validate predictive modeling techniques

– Induced mechanical disturbances via attitude control
system reaction wheels

• Use to characterize interferometer stability and control
systems



23

SIM System Ground Testbeds:  STB-3

STB-3

• Nanometer stability on flexible structure
• Full scale
• Full complexity
• Up to Three baselines 

SIM System Testbeds  
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SIM System Ground Testbeds:  MAM

• Sub-nanometer metrology
• 1/5 Scale - vibration isolated
• Operation in vacuum
• Demo µ-arcsec measurement

Micro Arcsecond Metrology Testbed
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Mapping of Flight Risk to Technology Program

TRDV = Technology Readiness Design Verification
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System Engineering Process

• Establish the requirements and design on the mission
and instrument

• Allocation of requirements based on key Astrometric and
Dynamics & Control Error Budgets

• Utilize a traditional requirements flowdown and design
approach

– Developing a comprehensive set of System and
Subsystem requirements

– Using computerized requirements tracing tool

• Cross-cutting working groups define complex functional
interface requirements

• Identify and address Technology risks early

– Matrix of Flight requirements to technology challenges
• Technology Readiness Developments Matrix ( TRDV)

• Use System Modeling Extensively

– Flight System integrated Modeling Effort
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SIM Simulation Modeling

• System-level modeling approach

• Reduced versions of the integrated Flight System modeling
used as input

• Forms basis for the design of the ground processing
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SIM
Flight System Layout
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SIM Configuration

+Y

+Z

+X

Solar Panels

External Metrology
Truss (MET Kite)

Siderostat
Bays

Spacecraft components &
Instrument Electronics

embedded in Backpacks behind
PSS Wing

MET Beams shown
for one Sid Bay only

Precision Support Structure
(PSS Wing)

E
E

L
V

 L
au

nc
h 

F
ai

ri
ng

MET Kite
stowed

B
ac

k
p

ac
k

 (
2)

PSS
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Light Paths Through Instrument

1. All beams exit Switchyard in -Y direction.
2. Enter ODLs, correcting baseline OPDs.
3. Exit ODLs in +Y direction.
4. Pass through Switchyard unvignetted.
5. Enter Combiner.

1. All beams exit Siderostat  Bays in +Y direction.
2. 180 deg reversal at U-Turn Mirror pairs.
3. Enter Switchyard with zero Optical Path
    Differences (OPDs).

Siderostat
Bay

Switchyard

U-Turn
Mirrors

+Z

+X+Y

Switchyard

High

Combiner

Low
ODLs

(Optical Delay Lines)
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Instrument Layout

+Z

+X+Y
Combiner (4) 

Switchyard

ODL - High Bandwidth (4)
(hidden under Sid Bay Bench)

ODL - Low Bandwidth (4)
(Long Stroke)

Siderostat Bay (8) 

Sid Bay Optical Bench
(ref only)

U-Turn (Roof) Mirror Pairs (8)

PSS

Note: the Nuller will be
mounted to one Combiner
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Siderostat Bay Configuration

PM

FSM
SM

F

F

F

F

Optical Bench

+Z

+X

+Y

F

Siderostat Az/El Gimbal
& X-axis Translation Drive

CCD
Camera

F

Siderostat Bay
Rod Flexure (3)

Siderostat Bay Z-axis
Translation Drive (3)

Two Side Panels
removed for clarity

Siderostat Bay (0.535m wide, 0.6m high, 1.9m long)

15 deg FOR

27.5 deg nominal elevation
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Optical Delay Line (ODL)

From
Switchyard

To Beam
Combiner

1.5 m
travel

Track

Trolley

PZTVoice Coil

Catseye

Motor with
Belt Drive
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Astrometric Beam Combiner

• ABC Functions

– interferes light from two arms of the interferometer

– provide feedback from the star tracker for pointing
control

– measure dispersed white light fringes to determine
starlight pathlength differences

– launch point for internal metrology including a common
fiducial

– provide internal calibration and alignment (stimulator)
including diffraction effects, alignment of starlight path
to cameras, and alignment knowledge between the
metrology and starlight paths
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m etrology laser detector

Stim ulator 

vis.+ 1.3

Dispersion prism s 

M et. beam

launcher
shutters

Dichroic

W edge M irror

STAR TRACKER

CAM ERA 

Beam splitter

field stop 

(dia.=Airy@ 1.3)

Star position

detectors

FRINGE CAM ERA

Incident Light

W hite

Light

M etrology Light

Expanded V iew  of 

Dichroic W edge M irror

ASTROMETRIC BEAM COMBINER vers. 2.2 
3/29/00 R. Sigler  

fringe detectors

fold m irrors

1.3 (stim ulator) detectors

Rem ovable
alignm ent 

corner cubes
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Detectors and Cameras

• Separate detectors for angle and fringe tracker

– allows different PSF sizes and clocking rates

• Fringe tracking detector

– 80 channel spectrometer for acquisition and measurement of
science fringes

– on-chip binning to suppress read noise on dim stars

• EEV-39 CCD  Detector
Characteristics

– commercial device

– 80 x 80 pixels

– 4 quadrants

– 1 kHz frame rate

– QE - 0.7

– 3 e- readnoise at 50kpix/sec

– region of interest capability
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Metrology Kite & Boom

Spacecraft

2-Axis
Translation Stage

Beam Launcher
on 2-axis tip/tilt stage

(2 per Kite vertice)

Triple
Corner Cube

Boom
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Real-Time Control Subsystem Design

• Interferometer Electronics and Computers
– Instrument Flight Computers (4 @ 500 MIPS ea)

• Two x2000 PPC750s per IFC
– Shared-Memory Interconnect
– Spacecraft bus interface
– Interconnect I/O Nodes (25)
– Electronics Cages for Kite (4), Sid (7), Met (1),

Combiner (4)

• Control Algorithms and Testbeds
– Interferometer Real Time Control Algorithms
– Control Analysis Testbed

• Interferometer Flight Software and Testbeds
– Software Simulation Testbed
– SIM Flight System Testbed

• RTC Integration Support Equipment H/W, S/W,
& Test
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SIM RTC Electronics Block Diagram
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Interferometer Software Implementation
• Software Functionality

– provides for autonomous sequencing for science observations

– provides for instrument diagnostics functions

– provides functionality and servo control for interferometers

– provides data reduction and compression for downloads

• Software Implementation

– centralized architecture with exceptions (e.g metrology pointing

– four CPUs all running same software

– highly synchronous with hardware

– VME based

– written in C++ (w/ possibility of Lisp for sequencer)

• Fault Protection
• will handle some instrument anomaly condition (e.g. can’t see star)

• for high-level faults will call home

• Critical Design Issues

– processor throughput

– bus bandwidth

– fault protection design
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Precision Support Structure Construction

Combiner (4)

Switchyard

Sid Bay

Flat Panel
Construction

Hinge
Line

-Y Wing Shown
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Spacecraft Subsystem Avionics

• All S/C avionics has heritage from flight programs;
planned as build-to-print for SIM

– ACS, Electrical Power, Thermal from EOS

– DMS from SBIRS-low

– Telecom from EOS, DS-1

• Instrument interfaces

– Data interface with Instrument Flight Computers (4)
via 1553

– Switched primary power (36 “wall switches)

– Survival heaters

• X band telecom fully compatible with DSN
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S/C Subsystem Avionics Block Diagram

HGA

LGA

LGA

TWTA

Spacecraft
Processor

SDST
SPE CSS4 1

Spacecraft
Control
Unit

Analog
Tlm

SSR

Instrument
Flight 
Computer 1

Instrument
Flight 
Computer 4

DMS Bus
(1553)

4

3

STA 1

IRU

Motor
Drive

1
4 Deployment

Drives

Gimbal
Drive

Biax
SADA

ACS

Spacecraft Bus (1553)

Thermal Control

HDE 1

HDE 9

• • •

Electrical Power

ARE 1

ARE 6

ACE

PCE

Solar
Array

WDE 1 RWA 1

WDE 6 RWA 6

VDE DTM 1 4

Isolation
Valves

•••
•••

Propulsion

Legend:

ARE- Array Regulator Electronics
CSSA- Course Sun Sensor Assy
DTM- Dual Thruster Module
HDE- Heater Drive Electronics
HGA- High Gain Antenna
IRU- Inertial Reference Unit
LGA- Low Gain Antenna
PCE - Power Control Electronics
RWA- Reaction Wheel Assy

SDST- Small Deep Space 
Transponder

SSR- Solid State Recorder
STA- Star Tracker Assy
TWTA- Traveling Wave Tube 

Amplifier
VDE- Valve Drive Electronics
WDE- Wheel Drive Electronics

Battery

DMS

••

•
•

Telecom

Switched
Power

Pulse Cmds

4
HGA 
Biax
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Spacecraft Flight Software

• Instrument interfaces

– Attitude and rate data

– Pointing requests from instrument

– Solid state recorder and link management

– Survival thermal control

– Coordinated attitude, solar array, HGA slews

– Data transmission to Ground

• CCSDS capabilities included
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SIM Flight System
Integration and Test
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Flight System Development Flow

2002 2003 2004 2005 2006

II&T

PSS Design, Build and Test

S/CI&T

Spacecraft Design, Build and Test

ATLO

FS ATLO
Assembly and Test 

Operations

FS ATLO
Launch Operations

Launch
06/01/06

Unscheduled Work

Instrument Design, Build and Test
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SIM Performance Testing

• Two types of system level performance tests

– Functional (nanometer control) test
• test functionality/dynamics&control

• tests the ability to acquire and track stellar fringes on
dim targets

– Performance (picometer) vacuum test
• tests the ability to measure the fringe position and

metrology at the required levels

• tests measurement accuracy

• single baseline test only
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Picometer Performance Test

Test Planned for LM 
Delta TV Chamber
(11 m x 24 m)

Prototype Picometer Pseudostar
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Constraints & Margins - Mass & Power

• SIM Mass (CBE) =  ~ 3200 kg

• Launch Vehicle Capability = 5307 kg

• SIM Power (CBE) = ~ 3000 W

• Solar Array Output = 4000W
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Mission System
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Flight Operations Data Flow

SIM 
Science
Team
   & 

Science
Community

Science
Request Mission

Planning
& 

Sequence
Integration

  Observation
    Requests

Cmd
Load

Telemetry

       TMOD Ground Services

  Multi-
 Mission
   Nav

   Data
 Archival
(Level 0)

Interfero-
meter

Operations

Science & Inst.
Engr. Packets

   Inst. Packets

S/C Engr
 Packets

Sci Data
Products IFR Engr

Requests

Mission Operations SystemInterferometer Science
      Data  Center

(JPL)

(JPL)

 (ISDC)

(ISDC &
Distributed)

 Spacecraft
 Operations

 (TRW)

S/C Engr
Requests

ISDC - Interferometer
            Science Data
            Center

TMOD - Telecommunications
               & Mission  Operations
               Directorate

Deep Space
Network

Deep Space
Network

Flight
Control
Service

  Data 
System
   Ops

Monitor
   Data

Radiometric 
Data

Science
Planning

&
 Analysis 
Operations

(ISDC)

Flight
Control
Service

(TMOD)
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SIM Tall Tentpoles
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SIM Interferometer Tall Tentpoles -
Nanometer Control

• SIM must have the ability to acquire and measure white
light fringes in the presence of multiple disturbance
sources

– ACS drifts

– RWA jitter

– Microdynamic events

– Self induced disturbances (metrology dither, delay line
motion)

• Pointing on dim targets

– less than 30 mas pointing error on guide stars

– angle feed forward information to science star to
produce less than 30 mas pointing error

• Fringe stability on dim targets

– less than 10 nm OPD jitter on guide stars

– pathlength feed forward on science star with less than
10 nm OPD jitter
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SIM Interferometer Tall Tentpole
Thermal Design and Control

• Milli-kelvin stability of starlight optics and optical systems

– errors arise from  subaperture metrology system

– temperature change and spatial gradients are more
important than absolute temperature control

• Milli-kelvin control of metrology beam launchers

– errors due to OPD changes in launcher optics

– beam launchers will use an athermalized design

• Sub-kelvin control of PSS wing and metrology boom

– ~10-100 um mechanical stability of wing and boom

• Traditional thermal issues

– heat contamination between components

– methods of heat rejection
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SIM Tall Tentpole - System Complexity

• SIM is a complex instrument

– many actuators

– many sensors

– lots of high bandwidth control loops

– high precision components

– 5 year lifetime

• Need to demonstrate ability to design, build, and test
systems of SIM’s complexity

– How to divide the design job ?

– How to monitor and manage fabrication ?

– How to test for system function and performance ?

– How to maintain performance over mission life ?
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Summary
• SIM will increase Astrometric performance nearly two orders of magnitude

over current capability

• A technology program suite of testbeds and models

– Tied to Flight System development

– Reduce risk

– Validate that SIM meets on-orbit performance requirements

• SIM is developing state-of-the-art electro-optical devices within a complex
instrument configuration

– Picometer-class metering gauges

– Precision optics and structures

– Millikelvin thermal control

• SIM has numerous System challenges ahead

– Performance

– Interfaces

– Complex modeling activities

• Will produce great science results


